本站APP,内容更劲爆

亚洲男人的天尝堂

类型:黄金有罪下 下载 地区: 香港 年份:2020-07-07

剧情介绍

2016-2017学年九年级(上)期中数学试卷一、选择题1.若关于x的方程(a﹣1)x2+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠1B.a>1C.a<1D.a≠02.一元二次方程x2﹣2x﹣3=0的根的情况是()A.无实根B.有两相等实根C.有两不等实根D.无法判断3.下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.正方形4.已知方程2x2﹣4x﹣3=0两根分别是x1和x2,则x1x2的值等于()A.﹣3B.﹣C.3D.5.如图,△ABC≌△AED,点D落在BC上,且∠B=60°,则∠EDC的度数等于()A.45°B.30°C.60°D.75°6.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A.45°B.60°C.25°D.30°7.如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第6个图案小木棒根数是()A.42B.48C.54D.568.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干、和小分支总数共57.若设主干长出x个支干,则可列方程是()A.(1+x)2=57B.1+x+x2=57C.(1+x)x=57D.1+x+2x=579.将抛物线y=2x2﹣1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是()A.(2,1)B.(1,2)C.(1,﹣1)D.(1,1)10.如图,∠MON=20°,A、B分别为射线OM、ON上两定点,且OA=2,OB=4,点P、Q分别为射线OM、ON两动点,当P、Q运动时,线段AQ+PQ+PB的最小值是()A.3B.3C.2D.2二、填空题11.方程3x2﹣2x﹣1=0的二次项系数是,一次项系数是,常数项是.12.点A(﹣1,2)关于原点对称点B的坐标是.13.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3.若将实数(x,﹣2x)放入其中,得到﹣1,则x= .14.如图,⊙O的直径AB为13cm,弦AC为5cm,∠ACB的平分线交⊙O于D,则CD长是cm.15.抛物线y=ax2+b+c的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,等边△ABC和等边△ADE中,AB=2,AD=2,连CE,BE,当∠AEC=150°时,则BE= .三、解答题17.按要求解下列方程:x2+x﹣3=0(公式法)18.已知抛物线的顶点为(1,﹣4),且过点(﹣2,5).(1)求抛物线解析式;(2)求函数值y>0时,自变量x的取值范围.19.如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AB于F,求证:AD=CD.20.如图,在边长为1的小正方形组成的方格纸上将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB′C′;(2)以点C为坐标原点,线段BC、AC所在直线分别为x轴,y轴建立直角坐标系,请直接写出点B′的坐标;(3)写出△ABC在旋转过程中覆盖的面积.21.如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?22. 2015年十一黄金周商场大促销,某店主计划从厂家采购高级羽绒服和时尚皮衣两种产品共20件,高级羽绒服的采购单价y1(元/件)与采购数量x1(件)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);时尚皮衣的采购单价y2(元/件)与采购数量x2(件)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经店主与厂家协商,采购高级羽绒服的数量不少于时尚皮衣数量,且高级羽绒服采购单价不低于1240元,问该店主共有几种进货方案?(2)该店主分别以1760元/件和1700元/件的销售出高级羽绒服和时尚皮衣,且全部售完,则在(1)问的条件下,采购高级羽绒服多少件时总利润最大?并求最大利润.23.已知在Rt△ABC中,∠ACB=90°,AC=BC,BM⊥CM于M,且CM>BM(1)如图1,过点A作AF⊥CM于F,直线写出线段BM、AF、MF的数量关系是(2)如图2,D为BM延长线上一点,连AD以AD为斜边向右侧作等腰Rt△ADE,再过点E作EN⊥BM 于N,求证:CM+EN=MN;(3)将(2)中的△ADE绕点A顺时针旋转任意角α后,连BD取BD中点P,连CP、EP,作出图形,试判断CP、EP的数量和位置关系并证明.24.如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m为常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B左侧),与y轴交于点C(0,﹣3),点D在二次函数图象上,且CD∥AB,连AD;过点A作射线AE交二次函数于点E,使AB平分∠DAE(1)当a=1时,求点D的坐标;(2)证明:无论a、m取何值,点E在同一直线上运动;(3)设该二次函数图象顶点为F,试探究:在x轴上是否存在点P,使以PF、AD、AE为边构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.2016-2017学年九年级(上)期中数学试卷参考答案与试题解析一、选择题1.若关于x的方程(a﹣1)x2+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠1B.a>1C.a<1D.a≠0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得a﹣1≠0,再解即可.【解答】解:由题意得:a﹣1≠0,解得:a≠1.故选:A.【点评】此题主要考查了一元二次方程的定义,一元二次方程的一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.一元二次方程x2﹣2x﹣3=0的根的情况是()A.无实根B.有两相等实根C.有两不等实根D.无法判断【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=(﹣2)2﹣4×1×(﹣3)=16>0,∴方程有两个不相等的实数根.故选:C.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,不是中心对称图形.故错误;B 、不是轴对称图形,是中心对称图形.故错误;C 、是轴对称图形,不是中心对称图形.故错误;D 、是轴对称图形,也是中心对称图形.故正确.故选D .【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知方程2x 2﹣4x ﹣3=0两根分别是x 1和x 2,则x 1x 2的值等于( )A .﹣3B .﹣C .3D .【考点】根与系数的关系.【分析】利用根与系数的关系,直接得出两根的积.【解答】解:∵方程2x 2﹣4x ﹣3=0两根分别是x 1和x 2,∴x 1x 2=﹣.故选:B .【点评】此题考查根与系数的关系,设x 1,x 2是关于x 的一元二次方程ax 2+bx+c=0(a ≠0,a ,b ,c为常数)的两个实数根,则x 1+x 2=﹣,x 1x 2=. 5.如图,△ABC ≌△AED ,点D 落在BC 上,且∠B=60°,则∠EDC 的度数等于( ) A .45°B .30°C .60°D .75°【考点】全等三角形的性质.【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【解答】解:∵△ABC ≌△ADE ,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=∠B=60°,∴∠EDC=180°﹣∠ADE﹣∠ADB=60°.故选C.【点评】本题考查了全等三角形的性质,邻补角的定义的应用,熟练掌握全等三角形的性质是解题的关键.6.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A.45°B.60°C.25°D.30°【考点】垂径定理;含30度角的直角三角形.【分析】连接OB,根据OC⊥AB,P为OC的中点可得出OP=OB,故∠OBP=30°,由直角三角形的性质得出∠BOP的度数,根据圆周角定理即可得出结论.【解答】解:连接OB,∵OC⊥AB,P为OC的中点,∴OP=OB,∴∠OBP=30°,∴∠BOP=90°﹣30°=60°,∴∠BAC=∠BOP=30°.故选D.【点评】本题考查的是垂径定理,根据题意作出辅助线,利用直角三角形的性质求解是解答此题的关键.7.如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第6个图案小木棒根数是()A.42B.48C.54D.56【考点】规律型:图形的变化类.【分析】由题意可知:第1个图案需要小木棒1×(1+3)=4根,第二个图案需要2×(2+3)=10根,第三个图案需要3×(3+3)=18根,第四个图案需要4×(4+3)=28根,…,继而即可找出规律,进一步求出第6个图案需要小木棒的根数.【解答】解:拼搭第1个图案需4=1×(1+3)根小木棒,拼搭第2个图案需10=2×(2+3)根小木棒,拼搭第3个图案需18=3×(3+3)根小木棒,拼搭第4个图案需28=4×(4+3)根小木棒,…拼搭第n个图案需小木棒n(n+3)=n2+3n根.当n=6时,n2+3n=62+3×6=54.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.8.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干、和小分支总数共57.若设主干长出x个支干,则可列方程是()A.(1+x)2=57B.1+x+x2=57C.(1+x)x=57D.1+x+2x=57【考点】由实际问题抽象出一元二次方程.【分析】关键描述语是“主干、支干、小分支的总数是73”,等量关系为:主干1+支干数目+小分支数目=57,把相关数值代入即可.【解答】解:∵主干为1,每个支干长出x个小分支,每个支干又长出同样数目的小分支,∴小分支的个数为x×x=x2,∴可列方程为1+x+x2=57.故选B.【点评】考查列一元二次方程,得到主干、支干、小分支的总数的等量关系是解决本题的关键.9.将抛物线y=2x2﹣1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是()A.(2,1)B.(1,2)C.(1,﹣1)D.(1,1)【考点】二次函数图象与几何变换.【分析】直接根据平移规律作答即可.【解答】解:将抛物线y=2x2﹣1向上平移2个单位再向右平移1个单位后所得抛物线解析式为y=2 (x﹣1)2+1,所以平移后的抛物线的顶点为(1,1).故选D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.10.如图,∠MON=20°,A、B分别为射线OM、ON上两定点,且OA=2,OB=4,点P、Q分别为射线OM、ON两动点,当P、Q运动时,线段AQ+PQ+PB的最小值是()A.3B.3C.2D.2【考点】轴对称-最短路线问题.【分析】首先作A关于ON的对称点A′,点B关于OM的对称点B′,连接A′B′,交于OM,ON分别为P,Q,连接OA′,OB′,可求得AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,然后由特殊角的三角函数值,判定∠OA′B′=90°,再利用勾股定理求得答案.【解答】解:作A关于ON的对称点A′,点B关于OM的对称点B′,连接A′B′,交于OM,ON分别为P,Q,连接OA′,OB′,则PB′=PB,AQ=A′Q,OA′=OA=2,OB′=OB=4,∠MOB′=∠NOA′=∠MON=20°,∴AQ+PQ+PB=A′Q+PQ+PB′=A′B′,∠A′OB′=60°,∵cos60°=, =,∴∠OA′B′=90°,∴A′B′==2,∴线段AQ+PQ+PB的最小值是:2.故选D.【点评】此题考查了最短路径问题以及勾股定理.注意准确找到P,Q的位置是解此题的关键.二、填空题11.方程3x2﹣2x﹣1=0的二次项系数是 3 ,一次项系数是﹣2 ,常数项是﹣1 .【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项进行分析即可.【解答】解:方程3x2﹣2x﹣1=0的二次项系数是3,一次项系数是﹣2,常数项是﹣1,故答案为:3;﹣2;﹣1.【点评】此题主要考查了一元二次方程的一般形式,关键是掌握要确定一次项系数和常数项,首先要把方程化成一般形式.12.点A(﹣1,2)关于原点对称点B的坐标是(1,﹣2).【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:它们的坐标符号相反可直接得到答案.【解答】解:点A(﹣1,2)关于原点对称点B的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握两个点关于原点对称时,它们的坐标符号相反. 13.小明设计了一个魔术盒,当任意实数对(a ,b )进入其中,会得到一个新的实数a 2﹣2b+3.若将实数(x ,﹣2x )放入其中,得到﹣1,则x= ﹣2 .【考点】解一元二次方程-配方法.【专题】新定义.【分析】根据新定义得到x 2﹣2•(﹣2x )+3=﹣1,然后把方程整理为一般式,然后利用配方法解方程即可.【解答】解:根据题意得x 2﹣2•(﹣2x )+3=﹣1,整理得x 2+4x+4=0,(x+2)2=0,所以x 1=x 2=﹣2.故答案为﹣2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. 14.如图,⊙O 的直径AB 为13cm ,弦AC 为5cm ,∠ACB 的平分线交⊙O 于D ,则CD 长是 cm . 【考点】圆周角定理;全等三角形的判定与性质;角平分线的性质;勾股定理.【分析】首先作DF ⊥CA ,交CA 的延长线于点F ,作DG ⊥CB 于点G ,连接DA ,DB .由CD 平分∠ACB ,根据角平分线的性质得出DF=DG ,由HL 证明△AFD ≌△BGD ,得出CF 的长,又△CDF 是等腰直角三角形,从而求出CD 的长.【解答】解:作DF ⊥CA ,垂足F 在CA 的延长线上,作DG ⊥CB 于点G ,连接DA ,DB .∵CD 平分∠ACB ,∴∠ACD=∠BCD∴DF=DG,,∴DA=DB.∵∠AFD=∠BGD=90°,在Rt△ADF和Rt△BDG,,∴Rt△AFD≌Rt△BGD(HL),∴AF=BG.同理:Rt△CDF≌Rt△CDG(HL),∴CF=CG.∵AB是直径,∴∠ACB=90°,∵AC=5cm,AB=13cm,∴BC==12(cm),∴5+AF=12﹣AF,∴AF=,∴CF=,∵CD平分∠ACB,∴∠ACD=45°,∵△CDF是等腰直角三角形,∴CD=(cm).故答案为:.【点评】本题综合考查了圆周角的性质,圆心角、弧、弦的对等关系,全等三角形的判定,角平分线的性质等知识点的运用.注意准确作出辅助线是解此题的关键.15.抛物线y=ax2+b+c的部分图象如图所示,则当y<0时,x的取值范围是x<﹣1或x>3 .【考点】二次函数与不等式(组).【分析】先求出抛物线与x轴另一交点的坐标,再利用函数图象即可而出结论.【解答】解:∵抛物线与x轴的一个交点坐标是(﹣1,0),对称轴是直线x=1,∴抛物线与x轴另一交点的坐标是(3,0),∴当y<0时,x<﹣1或x>3.故答案为:x<﹣1或x>3.【点评】本题考查的是二次函数与不等式,能根据题意利用数形结合求出x的取值范围是解答此题的关键.16.如图,等边△ABC和等边△ADE中,AB=2,AD=2,连CE,BE,当∠AEC=150°时,则BE= 4 .【考点】全等三角形的判定与性质;等边三角形的性质;勾股定理.【分析】如作CM⊥AE于M,设CM=a,在RT△ACM利用勾股定理求出a,再求出CE,由△CAE≌△BAD,得到EC=BD,在RT△EBD中利用勾股定理即可求出BE.【解答】解:如作CM⊥AE于M,设CM=a,∵△ABC、△ADE都是等边三角形,∴AC=AB=2,AE=AD=DE=2,∠CAB=∠EAD=∠EDA=60°,∴∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD,∴EC=BD,∴∠AEC=∠ADB=150°,∴∠EDB=90°,∵∠AEC=150°,∴∠CEM=180°﹣∠AEC=30°,∴EM=a,在RT△ACM中,∵AC2=CM2+AM2,∴28=a2+(2+a)2a=1(或﹣4舍弃),∴EC=BD=2CM=2,在RT△EBD中,∵DE=2,BD=2,∴EB===4.故答案为4.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、直角三角形中30度角的性质,解题的关键是利用150°构造30°的直角三角形,求出相应的线段,属于中考常考题型.三、解答题17.按要求解下列方程:x2+x﹣3=0(公式法)【考点】解一元二次方程-公式法.【分析】先求出b 2﹣4ac 的值,再代入公式x=计算即可.【解答】解:∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×1×(﹣3)=13>0,x==,∴x 1=,x 2=.【点评】本题考查了解一元二次方程的应用,掌握求根公式x=是本题的关键. 18.已知抛物线的顶点为(1,﹣4),且过点(﹣2,5).(1)求抛物线解析式;(2)求函数值y >0时,自变量x 的取值范围.【考点】待定系数法求二次函数解析式.【专题】计算题. 【分析】(1)由于已知抛物线顶点坐标,则可设顶点式y=a (x ﹣1)2﹣4,然后把(﹣2,5)代入求出a 的值即可;(2)先求出抛物线与x 轴的交点坐标,然后写出抛物线在x 轴上方所对应的自变量的取值范围即可.【解答】解:(1)设抛物线解析式为y=a (x ﹣1)2﹣4,把(﹣2,5)代入得a •(﹣2﹣1)2﹣4=5,解得a=1,所以抛物线解析式为y=(x ﹣1)2﹣4,即y=x 2﹣2x ﹣3;(2)当y=0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则抛物线与x 轴的两交点坐标为(﹣1,0),(3,0),而抛物线的开口向上,所以当x <﹣1或x >3时,y >0.【点评】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.19.如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AB于F,求证:AD=CD.【考点】圆周角定理;全等三角形的判定与性质.【专题】证明题.【分析】由CD⊥AB于E,CO⊥AB于F,根据垂径定理可得AD=2AF,CD=2CE,∠OEC=∠OFA=90°,然后由AAS判定△COE≌△AOF,继而证得CE=AF,则可证得结论.【解答】证明:∵CD⊥AB,CO⊥AB,∴∠OEC=∠OFA=90°,AD=2AF,CD=2CE,在△OCE和△OAF中,,∴△OCE≌△OAF(AAS),∴CE=AF,∴AD=CD.【点评】此题考查了圆周角定理以及全等三角形的判定与性质.注意证得△OCE≌△OAF是解此题的关键.20.如图,在边长为1的小正方形组成的方格纸上将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB′C′;(2)以点C为坐标原点,线段BC、AC所在直线分别为x轴,y轴建立直角坐标系,请直接写出点B′的坐标(1,1);(3)写出△ABC在旋转过程中覆盖的面积π+1 .【考点】作图-旋转变换.【专题】作图题.【分析】(1)利用网格特点和旋转的性质画出点B 和C 的对应点B′、C′,即可得到△AB′C′;(2)建立直角坐标系,然后写出点B′的坐标;(3)根据扇形面积公式,计算S 扇形BAB′+S △B′AC′,即可得到△ABC 在旋转过程中覆盖的面积.【解答】解:(1)如图,△AB′C′为所作; (2)如图,点B′的坐标为(1,1);(3)△ABC 在旋转过程中覆盖的面积=S 扇形BAB′+S △B′AC′=+×1×2=π+1.故答案为(1,1),π+1.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形. 21.如图,要设计一副宽20cm 、长30cm 的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度? 【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设横彩条的宽度是2xcm ,竖彩条的宽度是3xcm ,根据设计的图案宽20cm 、长30cm ,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,彩条所占面积是图案面积的,列出方程求解即可.【解答】解:设横彩条的宽度是2xcm ,竖彩条的宽度是3xcm ,则(30﹣6x )(20﹣4x )=(1﹣)×20×30,解得x 1=1或x 2=9.∵4×9=36>20,∴x=9 舍去,∴横彩条的宽度是2cm ,竖彩条的宽度是3cm .【点评】本题考查的是一元二次方程的应用,理解题意,根据题、图,正确的列出方程,此时注意,把不合题意的解舍去. 22.2015年十一黄金周商场大促销,某店主计划从厂家采购高级羽绒服和时尚皮衣两种产品共20件,高级羽绒服的采购单价y 1(元/件)与采购数量x 1(件)满足y 1=﹣20x 1+1500(0<x 1≤20,x 1为整数);时尚皮衣的采购单价y 2(元/件)与采购数量x 2(件)满足y 2=﹣10x 2+1300(0<x 2≤20,x 2为整数).(1)经店主与厂家协商,采购高级羽绒服的数量不少于时尚皮衣数量,且高级羽绒服采购单价不低于1240元,问该店主共有几种进货方案?(2)该店主分别以1760元/件和1700元/件的销售出高级羽绒服和时尚皮衣,且全部售完,则在(1)问的条件下,采购高级羽绒服多少件时总利润最大?并求最大利润.【考点】二次函数的应用.【分析】(1)首先根据题意求出x 的取值范围,结合x 为整数,即可判断出商家的几种进货方案;(2)令总利润为W ,根据利润=售价﹣成本列出W 与x 的函数关系式W=30(x ﹣9)2+9570,求出二次函数的最值即可.【解答】解:(1)设购买羽绒服x 件,则购买皮衣(20﹣x )件,则:,∴10≤x ≤13且为整数,∴该店主有4种进货方案:羽绒服10件,皮衣10件;羽绒服11件,皮衣9件;羽绒服12件,皮衣8件;羽绒服13件,皮衣7件;(2)设购买羽绒服x件,利润为W元,则W=(1760+20x﹣1500)x+(1700+10(20﹣x)﹣1300)(20﹣x)=30(x﹣9)2+9570(10≤x≤13且为整数)∵a=30>0,∴当10≤x≤13且为整数是,W随x的增大而增大,∴当x=13时,最大利润为10050元.答:当采购羽绒服13件时,有最大利润为10050元.【点评】本题主要考查二次函数的应用的知识点,解答本题的关键是明确销售单价与销售件数之间的函数关系式,会表达单件的利润及总利润,此题难度一般.23.已知在Rt△ABC中,∠ACB=90°,AC=BC,BM⊥CM于M,且CM>BM(1)如图1,过点A作AF⊥CM于F,直线写出线段BM、AF、MF的数量关系是AF=BM+MF(2)如图2,D为BM延长线上一点,连AD以AD为斜边向右侧作等腰Rt△ADE,再过点E作EN⊥BM 于N,求证:CM+EN=MN;(3)将(2)中的△ADE绕点A顺时针旋转任意角α后,连BD取BD中点P,连CP、EP,作出图形,试判断CP、EP的数量和位置关系并证明.【考点】全等三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】(1)根据全等三角形的判定定理AAS推知△ACF≌△CBM,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换,即可解答;(2)如图2,过点A作AG⊥CM于G,反向延长GA交EN于H,由四边形GMNH为矩形,得到AH⊥EN,根据三垂直得:△CMB≌△AGC,△AEH≌△EDN,利用全等三角形的对应边相等得到相等的线段,即可解答.(3)取AB的中点M、AD的中点N,连接PM、CM、NE、PN,则可构造△PNE≌CMP,结论不言而喻.【解答】解:(1)AF=BM+MF,∵∠ACB=90°,∴∠ACF+∠BCM=90°.又∵AF⊥CM,∴∠ACF+∠CAF=90°,∴∠CAF=∠BCM.在△ACF和△CBM中,,∴△ACF≌△CBM,∴BM=CF,AF=CM,∴CF+MF=BM+MF=MC=AF,即AF=BM+MF.故答案为:AF=BM+MF.(2)如图2,过点A作AG⊥CM于G,反向延长GA交EN于H,∴四边形GMNH为矩形∴AH⊥EN根据三垂直得:△CMB≌△AGC,△AEH≌△EDN,∴CM=AG,EN=AH,∴MN=GH=GA+AH=CM+EN.(3)如图3,取AB的中点M、AD的中点N,连接PM、CM、NE、PN,∵△BCA与△AED均为等腰直角三角形,∴CM=BM=AM,CM⊥BA,EN=AN=DN,NE⊥AD,∵P为BD中点,∴PN=AM=BM=CM,PN∥BA,PM=AN=DN=NE,PM∥AD,∴AMPN是平行四边形,∴∠BMP=∠PND,∴∠PMC=∠ENP,∴△PNE≌CMP(SAS),∴CP=PE,∵CM⊥AB,PN∥AB,∴CM⊥PN,∴CP⊥PE,综上所述,CP=PE且CP⊥PE.【点评】本题考查了等腰直角三角形的性质、全等三角形的判定与性质,线段和差关系的证明方法、中点的用法、中位线性质等知识点,难度中等.对于证明线段和差关系的结论,截长或补短构造全等三角形是关键.第(3)问是中点的经典用法,取中点,借助中位线转移线段长度和角度,从而构造全等三角形,这一类题要引起重视.24.如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m为常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B左侧),与y轴交于点C(0,﹣3),点D在二次函数图象上,且CD∥AB,连AD;过点A作射线AE交二次函数于点E,使AB平分∠DAE(1)当a=1时,求点D的坐标;(2)证明:无论a、m取何值,点E在同一直线上运动;(3)设该二次函数图象顶点为F,试探究:在x轴上是否存在点P,使以PF、AD、AE为边构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据题意将a=1,C(0,﹣3)代入y=a(x2﹣2mx﹣3m2),进而求出m的值,即可得出答案;(2)首先根据题意表示出A,B,C,D,进而联立,求出E点坐标即可得出答案;(3)由(2)得:F(m,﹣4)、E(4m,5)、A(﹣m,0)、D(2m,﹣3),再利用PF,AD,AE的关系得出答案.【解答】解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x 2﹣2x ﹣3=(x ﹣1)2+4,故抛物线顶点坐标为:D (2,﹣3); (2)作D 关于AB 对称的点D′必在AE 上,当y=0,则0=a (x 2﹣2mx ﹣3m 2),解得:x 1=﹣m ,x 2=3m ,当x=0,y=﹣3am 2,可得:A (﹣m ,0)、B (3m ,0),C (0,﹣3am 2),D (2m ,﹣3am 2)∴D′(2m ,3am 2),∵抛物线过点C ,∴﹣3am 2=﹣3,则am 2=1,∴直线AD′的解析式为:y=x+1,联立,整理得x 2﹣3mx ﹣4m 2=0解得x 1=4m ,x 2=﹣m (舍去)∴E (4m ,5)∴E 在y=5上运动; (3)由(2)得:F (m ,﹣4)、E (4m ,5)、A (﹣m ,0)、D (2m ,﹣3)设P (b ,0)∴PF 2=(m ﹣b )2+16,AD 2=9m 2+9,AE 2=25m 2+25∴(m ﹣b )2+16+9m 2+9=25m 2+25,解得:b 1=﹣3m ,b 2=5m∴P (﹣3m ,0)或(5m ,0).【点评】本题考查了二次函数性质、勾股定理及函数图象上点的坐标性质等知识,正确解方程得出解集进而得出E点坐标是解题关键.

详情

猜你喜欢

Copyright © 2020